
How to account for non-LTI of Tx

analog buffer in IBIS AMI flow

Vladimir DmitrievVladimir Dmitriev--ZdorovZdorov

October 13, 2009
IBIS AMI group

2

IBIS AMI group, 2009

In this presentation we discuss the possibility to

account for non-LTI behavior of the Tx output buffer
in AMI flow:

- Why this is important
- What should be added/changed in the current

approach

- We consider the general issues, without final
details. But if the concept is accepted, it does not

seem difficult to specify changes in the flow and
DLL’s interface

At the end, we briefly consider “true differential”
version (optional)

3

IBIS AMI group, 2009

Analog model includes:

Tx front end + channel + Rx front end

They all are assumed LTI.

Tx full

strength

driver

load model

Pkg + PCB + Connector + PCB + Pkg
Rx

load model

LTI LTILTI?

This is the current partitioning between DLLs
and the ‘channel’

4

IBIS AMI group, 2009

Is output buffer of Tx always close to linear?

Linearity check:

Took a customer model at hand (IBIS)

Added plus/minus 1mA current source to ground, performed SPICE simulation.

In case of linear impedance, we should see identical offsets

+1mA

0mA

-1mA

V(t)

This check makes practical sense.

Current source with constant impedance in parallel

could serve as a stamp for a linear channel at a

given time step.

Different current values then show the accumulated

effect of channel’s state variables, that depend on

prehistory (preceding bits).

I(v) v

z(v)

P(v)

However, they were different

At switching point the driver has its smallest

impedance and hence has the ability to pump the

energy faster (produce more power).

This effect is not non-idealness but a basic feature

that allows the device switching fast but consuming

little power at steady state

5

IBIS AMI group, 2009

The above examples may seem extreme cases, but were not purposely selected:

that was a typical cmos driver model. The effect from non-linearity can be smaller.

But, in addition to that, there are time variations of the impedance (another side of

non-LTI) that prevents from getting accurate results from superposition.

Another example: Tx waveforms with 200µA current step increments

With LTI analog

buffer, a constant

current would only

cause proportional

vertical shifts.

However, we

observe changes in

pulse width and

shapes, too.

6

IBIS AMI group, 2009

1 2 3 4 5 6 7 8 9 10

x 10
-8

0.2

0.4

0.6

0.8

1

1.2

Y1(’00100’)

Y3 (’10110’)

Y1+Y2

Y2(’10010’)

How big is the effect from non-LTI Tx at Rx input?

3 Spice simulations with inputs (x1, x2, x3) produced 3 outputs: y1, y2 and y3.

x1 = ‘00100’

x2 = ‘10010’

x3 = ‘10110’

As we see, x3=x1+x2. But is y3=y1+y2?

No, there is a substantial difference

VR(t)

7

IBIS AMI group, 2009

The effect is typically smaller for differential buffers,
but still considerable

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
-7

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0100100

0111100

0011000

0111100

0111100

predicted by

superposition
~ 15% UI

8

IBIS AMI group, 2009

Some reports indicate that even though non-linearity
of the Tx output buffer for every setting is not large,

the output impedance is affected by tap settings in Tx

equalization, that cannot be accounted for in the
impulse response:

R. Mellitz, M Tsuk, T. Donisi, S. Pytel, Strategies for coping with non-linear and time variant
behavior for high speed serial buffer modeling, DesignCon 2008.

How to handle that?

9

IBIS AMI group, 2009

AMI standard assumes LTI of the front end buffers and the
channel.
From here it follows that the analog part can be completely
characterized by the impulse or step response having a
meaning of the transfer function.

Tx,

anlg
Pkg + PCB + Connector + PCB + Pkg

Rx,

anlg

Included into the impulse response

Tx,

algoritmic

Rx,

algoritmic

Tx DLL Rx DLL

Current partitioning between EDA platform and DLLs

10

IBIS AMI group, 2009

Can we implement non-linear full strength driver model and still
use channel’s impulse response?

Tx,

FSD

Rx,

anlg

LTI, included into the impulse response

Tx,

algoritmic

Rx,

algoritmic

Tx DLL Rx DLL

Channel

Tx

parasitics,

package

(S-params)

Yes, but then we need two, not one response functions to
characterize the “channel”.

Partitioning should be made as shown above

Vt(t)

Partitioning needed to account for non-LTI Tx buffer

11

IBIS AMI group, 2009

BTW, why do we need two responses, not one?

LTI channel

Port 1 Port 2

Any non-differential channel is a 2-port

- As such, it generally requires 2x2 matrix of S, Y or Z parameters

to describe, that assumes 4 different characteristics.

- Due to reciprocity (symmetry of the matrix) the number of

unique functions reduces to 3.

- Finally, since the far end of the LTI model should not be

connected to anything (Rx analog end is assumed LTI and

included), we get rid of one more function.

- The remaining two independent functions could be of different

type/dimension. Most convenient selections are input admittance

and transfer function.

- Why we had just one transfer response? Because when Tx was

assumed LTI, nothing was connected to the channel electrically

at front end, and hence the # of functions was reduced to 1.

12

IBIS AMI group, 2009

What does Tx DLL need to know about the channel
to produce the correct voltage Vtx(t)?

Tx,

FSD

Rx,

anlg

LTI, included into the impulse response

Tx,

algoritmic

Rx,

algoritmic

Tx DLL Rx DLL

Channel

Tx

parasitics,

package

(S-params)

It only needs to know input impedance or admittance of the LTI part.
Both responses are measured simultaneously:

Vt(t)

LTI part

I (t)

V (t)

By applying the step voltage, EDA platform

measures not only the output voltage but the

input current of the LTI part. From here, both
transfer and admittance impulse responses are

created

13

IBIS AMI group, 2009

What should be the structure then (on GetWave stage)?

Tx,

FSD

Tx,

algoritmic

Rx,

DLL

Tx DLL

Vt(t)

Y(s)

Vr(t)K(s)

Convolution, already exists

Another convolution, to solve

non-linear equation for Vt(t)

Convolution with K(s) is something we already have, convolution with
Y(s) is new.
Is it a big complication? How to solve for the voltage Vt(t)?

14

IBIS AMI group, 2009

How to solve for the voltage Vt(t)?

A simplest way is based on convolution. Current that

goes into the conductance:

∑
=

+==

N

i

iivyvytvtyi
1

00)(*)()(0 ihtyyi −=(1) where

Here, t0 is an observation moment, and v0 is the only unknown voltage.

The second relation comes from e.g. instant IV curve of the Tx itself:

),(00 tvFi =

Hence, at every step one has to solve the equation:

0),(00

1

00 =−+∑
=

tvFvyvy
N

i

ii

(2)

(3)

Solution should be governed by Tx DLL since it must produce the entire portion of the

voltage waveform, not just one point. Tx DLL can solve equation (3) on its own.

However, EDA platform can take most of the burden to solve the equation. It can even

use more efficient ‘recursive convolution’ algorithm.

How? (Let see an optional “side” proposal)

15

IBIS AMI group, 2009

Side proposal:
How EDA platform can help to simplify Tx/Rx DLL?

Can we imagine a shared standard utility DLL that contains the set of typical functions

needed by Tx/Rx DLL?

The interface to Utility functions should be standardized, the content made available for

all IC and EDA vendors.

EDA

platform

Tx DLL

Rx DLL

Utility DLL, contains

functions for

convolution,

equation solver etc.

For example, to solve equation (3), in Tx DLL they call the Utility function:

V = Util->Solve4TxVoltage(t0, fGetTxCurrent).

The second argument is a pointer to the function in Tx DLL that finds Tx current for a

given voltage, as defined in (2).

The header info:

typedef double (*pGetTxCurrent) (double); // use for Itx = F(Vtx), as in (2)

double Solve4TxVoltage(double t0, pGetTxCurrent);

void LoadAdmittanceResponse(double *resp, double step);
Therefore, the responsibility of Tx Dll is only to provide the function that performs (2).
Util instance will take care of the admittance response and store preceding values of the voltage, to
compute the rest in equation (3).

16

IBIS AMI group, 2009

What about “proof of concept” and performance?

We in Mentor have a software that has done very similar things for years. This

is a superfast simulator that assumes nonlinearity only in the transmitter.

This simulator implements same type of partitioning (Transmitter is a separate

DLL) and interface function (I=F(V)), we see no issues with accuracy and

convergence.

2-3 calls per step to the function in Tx DLL that estimates transmitter’s current

does not make a difference.

It is an extra convolution itself that affects the performance more. But not more

than other types of convolution that we use with AMI models.

17

IBIS AMI group, 2009

What are complications with input admittance?

-Tx Dll should have an additional functionality: it must be able to estimate the

current for a given output voltage. It should either solve the equation on its own,

or call the Utility DLL.

- Tx Dll Init() should optionally have one more parameter to handle admittance

response. It will store and then use it or communicate with Utility DLL.

- Partition should be done differently when measuring impulse responses.

- EDA platform should measure two responses, not one.

- It is doubtful that Tx equalization could be combined with channel’s transfer

function to make a single convolution, because non-linear Tx output buffer is in

between. Hence, Tx equalization should be made a separate convolution in Tx

GetWave(). Utility DLL can provide a convolution function to help coding the Tx

model.

18

IBIS AMI group, 20097 7 . 5 8 8 . 5 9 9 . 5 1 0 1 0 . 5 1 1 1 1 . 5 1 2

x 1 0
- 8

-1

-0 . 5

0

0 . 5

1

Implementation example

Tx output is affected by the channel’s
admittance

(solution of non-linear equation

and convolution with admittance

inside Tx DLL)

Admittance and transfer step responses

19

IBIS AMI group, 2009

It does not make formal difference, however # of convolutions could be more. Let’s

consider 3 cases:

1. FSD is not sensitive to the common mode admittance of the channel. Then, the

algorithm remains exactly the same. The currents and voltages we operate in Tx DLL

become differential, so is the input admittance and the transfer function (have 2

convolutions total)

2. FSD is sensitive to the common mode admittance. Then, the admittance we measure

for an LTI part should be an input admittance to the differential and common signal

(i.e. two responses and therefore, two convolutions). The function in Tx DLL that

estimates FSD’s output current should provide two current values for a given time

and two input voltages. We should solve a system of two equations, not one as

before. Channel’s transfer function still propagates only the difference signal, and

therefore remains scalar. Hence, we need 3 convolutions total.

3. If we also want to consider mode conversions because of channel’s asymmetry, then

we need 3 convolutions for admittance and 2 for transfer function. This is well beyond

current capabilities, we’ll consider that separately (5 convolutions total).

Does differential output make a difference to the

proposal?

20

IBIS AMI group, 2009

LTI part

I1 (t)

Vout (t)

By applying the step voltage, EDA platform

measures 3 responses that give the content of

2x2 admittance matrix and transfer response for

the difference signal.

+
-

+
-

V1 (t)

V2 =0

Differential output without mode conversion

=

2

1

1112

1211

2

1

V

V

yy

yy

I

I

I2 (t)

=

+

−
=

c

d

cc

dd

c

d

c

d

V

V

y

y

V

V

yy

yy

I

I

0

0

)(20

0)(
2

1

1211

1211

1. Measurement

2. Convert admittance into MM (to allow 2 convolutions):

21

IBIS AMI group, 2009

+

=

sumC

sumD

c

d

cc

dd

c

d

I

I

V

V

y

y

I

I

0

0

0

0

0

0

0

0

3. Only MM voltages are kept in circular buffer. Convolution sum (1)
becomes:

Differential output without mode conversion

4. Equations are formed with (4) converted into STD mode:

(4)

0
),,(

),,(

5.01

5.01

20102

20101

20

10

0_110_12

0_120_11
=

−

−
+

tVVF

tVVF

I

I

V

V

yy

yy

sumC

sumD (5)

Equation (5) is solved for V10, V20.

5. Result is converted into MM and stored in circular buffer:

 −
=

20

10

0

0

5.05.0

11

V

V

V

V

c

d

6. Differential voltage Vd0 also participates in channel transfer
response convolution

(6)

22

IBIS AMI group, 2009

responses/convolutions in different modes

26=2(trn)+4(adm)5=2(trn)+3(adm)Differential, most general case5

233=1(trn)+2(adm)Differential, with common mode

admittance but no conversion from

C to D mode

4

122=1(trn)+1(adm)Differential, not sensitive to

common mode admittance

3

122=1(trn)+1(adm)Single ended, consider admittance2

011 (transfer)No admittance considered, only

difference signal (current approach)

1

of n/l

equatio

ns to

solve

of analog

convolutions to

perform

of analog

responses to

measure

Analog channel typeCase

#

23

IBIS AMI group, 2009

Summary

- The proposal allows to greatly improve the accuracy of AMI-based

approach, making it similar to Spice simulation

- The proposal does not incur considerable performance

degradation compared to the existing standard

- The changes in Tx DLL are moderate (and remain optional). The

use of Utility DLL is an option to help in development

- The “proof of concept and performance” exists by way of the well

tested product plus Tx DLL example.

24

IBIS AMI group, 2009

All above was all about supporting non-LTI

behavior of the Tx’s output buffer.

Below, we consider some potential future

enhancements, to understand what it would take to

implement them…

25

IBIS AMI group, 2009

What if we want to consider common to differential

mode conversion?

The next step when analyzing differential channels could be to account for common

mode conversion, too. It is an important issue affecting BER and eye diagram. What

extra would be needed then?

What extra is for Tx/Rx DLLs?

- since Y-parameter matrix in (4) becomes full, 4 convolutions are required

-Tx DLL still solves for two unknown voltages and should estimate two currents

as a response on two given voltages, as in (5), (6).
Rx will not be affected, its input remains scalar.

Algorithmic parts in Tx/Rx DLL will not be affected, they still deal with differential

responses only.

What extra must EDA platform do?

-Compared to previous case, input admittance matrix becomes asymmetric,

hence we need to measure 3 not 2 admittance responses. Plus, differential and

common mode will have different transfer responses, hence 5 responses total.

26

IBIS AMI group, 2009

What if we want to consider non-linearity of Rx

analog input, too?

This is a serious complication.

- Most importantly, we will not be able to run Tx/Rx DLLs independently on many bits, as

we do now, because then we should solve the equations in Tx and Rx DLLs

simultaneously at every point.

- Solution should be run on the point-by point basis, EDA platform should govern the

solution for the analog part, and combine 2x2 channel stamp with momentary stamps

from Tx and Rx for non-linear parts

- Convolution in algorithmic part of Tx/Rx is still possible but is less efficient because

every time it will update just one call

- The channel should provide 3 responses for a single channel (non-differential) and 10

responses in differential case.

- The algorithm becomes very much as in general SPICE simulators, with addition of

algorithmic processing in Tx/Rx DLLs.

- Performance is considerably affected, however it remains for 1-2 orders faster than in

general simulators, because of avoiding much of the overhead costs.

27

IBIS AMI group, 2009

Thanks

